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Computer program REPES, which has been used in treating dynamic light scattering data for eight
years but never published, and the algorithm used within it are described in detail. A list of papers
quoting REPES and a brief discussion of suitability and performance of regularizing methods in in-
verting Laplace transform are given.

A homodyne dynamic light scattering (DLS) experiment follows fluctuations of light
scattered by a sample illuminated by a laser beam. A fluctuation treatment starts from
forming the intensity autocorrelation function g2(t),

g2(t) = 〈I(T)I(T + t)〉/〈I(T)〉2 − 1  , (1)

where 〈  〉 means averaging over time T, I(T) is the scattered intensity at time T, and t is
the time delay. 〈I(T)〉2 is sometimes called the homodyne base. A direct relation to
molecular dynamics is obtained for field autocorrelation function g1(t), which, for a
Gaussian field, is related to g2(t) by Siegert relation

g2(t) = g1
2(t)  . (2)

When g2(t) means the autocorrelation function of the intensity measured with a detector
of a non-zero detecting area, like in a real experiment, a correction factor β < 1 stands
on the right-hand side of Eq. (2). Absolute value at g1(t) is omitted for working with
g1(t) real. For molecular dynamics with a single relaxation process of relaxation time τ,
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the relation g1(t) = exp (–t/τ) holds; for several (r) relaxation processes of relaxation
times τ i the field autocorrelation function becomes

g1(t) = ∑ 
i=1

r

ai exp (−t/τi) (3)

with positive ai’s and ∑ 
i=1

r

ai = 1. An infinite relaxation time is allowed; in this paper, τ1

is reserved for it. Its amplitude (a1) is sometimes called the heterodyne base (in relation
to heterodyne DLS technique measuring g1(t) directly at the expense of worsening the
signal-to-noise ratio). For a continuous distribution w(τ) of relaxation times, Eq. (3) is
replaced by

g1(t) = ∫ w(τ) exp (−t/τ) dτ (4)

with w(τ) ≥ 0 and ∫ w(τ) dτ = 1. With a log τ abscissa, commonly used when data cover

a wide delay-time range, τw(τ) should be plotted over log τ for obtaining an equal-area
representation of τ distributions. When the β factor is absorbed into the g1(t) function,

we have ∑ 
i=1

r

ai = β1/2 with Eq. (3) and ∫ w(τ) dτ = β1/2 with Eq. (4).

Seeking w(τ) as a sum of δ-peaks yields Eq. (3); the least-squares approach to this
problem is known as the positive exponential sum (PES) method. It was proven1 that
PES with g1(t) data yields unique solution with a finite number r of relaxation times τ i.
Later, PES solution was shown to be the least-squares solution of Eq. (4) over any w(τ)
functions and a PES program using g2(t) data was described2. PES problem is well-
posed (cf. ref.3 Appendix, Theorem 6; a proof that Laplace kernel belongs to the set
considered there is beyond the scope of this paper). Ill-posedness appears when con-
sidering statistically acceptable deviations from the least-squares solution. Usually, it
turns out that a δ-peak may be spread in a wide variety of ways over a wide τ interval
(a half decade or even more) without an appreciable error increase.

CONTIN program4 seeks a smooth solution among the above variety by adding a
regularizing term (an integral of squared solution’s derivative of some order), multi-
plied by a factor (α), to the least-squares error term. The order of the derivative is
selected between 0 (the solution itself) and 5 by the NORDER parameter. g1(t) = g2

1/2(t)
data and numerical integration (i.e., Eq. (3) with some fixed integration τ grid and
non-negative ai’s) are used and derivatives are converted to differences. The α factor is
selected so as to yield a reasonable compromise between smoothing and error increase.
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F distribution function is used to calculate the probability of rejecting a solution. Prob-
ability 1 to Reject is defined by

Ix(p0/2, (n − p0)/2) = Βx(p0/2, (n − p0)/2)/Β(p0/2, (n − p0)/2)  , (5)

where Ix and Βx are the incomplete Beta functions5, Β is the complete Beta function5, p0

is the number of degrees of freedom in the reference solution, n is the number of data
items, and x = 1 – E0/E with E and E0 being the error term values for the actual and
reference solutions, respectively. As the reference solution, that calculated with lowest
α is used. Probability 2 to Reject is defined by

Ix((p0 − p)/2, (n − p0)/2)  , (6)

where p is the number of degrees of freedom in the actual solution. The number of
degrees of freedom is defined by

trace ((H + αR)−1H) = s − α × trace ((H + αR)−1R)  , (7)

where H and R are matrices representing error and regularizing terms, respectively. In
H and R, only rows and columns corresponding to nonzero amplitudes ai (s in number)
are considered. (After necessary rearrangements, Eq. (7) is identical with Eq. (A1) of
ref.6.) An α grid is used to calculate a set of solutions; that with Probability 1 to Reject
closest to 0.5 is chosen as the best. Inspecting other solutions may be sometimes useful.

Performing calculations with my PES program2, I soon found that obtaining the final
solution was cumbersome and lengthy. Since I was unable to write an automatic pro-
gram for refining both amplitudes and relaxation times at that time, I decided to fix
relaxation times to a grid uniformly spaced on log τ scale and wrote a positive ex-
ponential sum on a grid (PESG) program. It turned out that under the double precision
(16 significant digits) the algorithm used was numerically stable (with a single practi-
cally irrelevant exception2) without using the singular value decomposition procedure7

used by CONTIN and without any regularization, simply by setting Hessian matrix and
solving for corrections by Gauss elimination. I recognized that the result was nearly
identical with the reference solution of CONTIN and felt that adding a regularization to
PESG program would yield a program performing a regularized Laplace transform in-
version in a much simpler and faster way than CONTIN does.

A need for such a program appeared when I was trying to remove artifacts of the
CONTIN method left even after my modification of the regularizor8 enabling the use of
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CONTIN for very wide autocorrelation function data. I found8 that suppressing regular-
ization around a δ-function essentially removed artifacts (the result was published
later9); a next attempt with data simulated for a two-bin distribution with one bin nar-
row and high and the other wide and low (Fig. 5c in ref.8) yielded a good result when
the regularizor had different weights over either bin. Hence, artifacts seemed to be
caused by an improper distribution of the penalization among individual degrees of
freedom. Such an effect was rough prior to my modification of the regularizor, but still
persisted to some extent afterwards. Indeed, in the results with the artifacts, the number
of degrees of freedom and Probability 2 to Reject were large. So, my idea was to find
a weighting scheme for the regularizor yielding lowest Probability 2 to Reject (i.e., the
lowest number of degrees of freedom) for a given Probability 1 to Reject. This was
supported by the fact that, in the above two-bin distribution, the weight ratio of the
regularizor over individual bins yielding the lowest number of degrees of freedom gave
a good regularization. Unfortunately, programming this approach was very difficult.
Some preliminary attempts by the method of steepest descent to adjust the weighting
function of the regularizor (with zero NORDER parameter) seemed to confirm my fear
that such an approach may yield some “gaps” in the weighting function leaving some
sharp peaks and failing to smooth the result properly. In view of these two difficulties,
I gave up.

The CONTIN program was quite unsuitable for such a research. An essential diffi-
culty was that the chosen solutions yielded different Probability 1 to Reject with differ-
ent regularizor weighting schemes, so that their comparison could not be used for
evaluating the scheme suitability properly. A technical difficulty consisted in working
with a large program having about 60 subroutines and producing a huge output. Hence,
I added a regularizor to the above PESG program and obtained a regularized positive
exponential sum (REPES) program. The program was completed in autumn 1987. To
remove the major drawback of CONTIN, an automatic adjusting of α to a preselected
Probability 1 to Reject was programmed within REPES. However, nearly all artifacts of
CONTIN (with exception of that shown in Fig. 1 below) persisted in REPES. This is
why I decided to delay the publication until I find an appropriate weighting scheme for
the regularizor. On the other hand, REPES was much simpler and faster than CONTIN
and I put it at disposal of my colleagues. Now I see that REPES, despite of a limited
access, was mentioned in about 60 scientific papers and no better routine seems to
exist. This made me write the present paper.

PROGRAM DESCRIPTION

REPES program minimizes the expression

E + αR  , (8)
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where

E = ∑ 
k

[f(tk) − fk,exp]
2 (9)

is an error term, fk,exp is the autocorrelation function g2(t) datum at the delay time t = tk,
R is a regularizor, and

f(t) = [a1 + ∑ 
i=2

r

ai exp (−t/τi)]2  . (10)

Relaxation times τi are restricted to a τ grid spreading from τ2 to τr and equidistantly spaced
on log τ scale. A slight modification of the program allows for statistical weights of data
items in the error term E. Minimization proceeds with respect to the a ≡ (a1, a2, …, ar)
vector subject to the condition ai ≥ 0. α is adjusted so as to yield the Probability 1 to Reject

preselected by the user. ∑ 
i=1

r

ai  is left unconstrained. For NORDER = 2, the regularizor is

R = a2
2 + (2a2 − a3)2 + ∑ 

i=3

r − 1

(ai − 1 − 2ai + ai + 1)2 + (ar − 1 − 2ar)2 + ar
2 + Ba1

2 (11)

(corresponding to two extra grid points with zero amplitudes assumed at each grid
margin); for NORDER = 0,

R = ∑ 
i=2

r

ai
2 + Ba1

2  . (12)

A penalization of the heterodyne base (the term Ba1
2) is introduced to prevent moving

amplitudes of long relaxation times into the base in the regularization when this is
undesirable. A non-negative B constant is selected by the user. Note that in changing
the grid density D (the number of grid points per decade), the B constant should be
proportional to D–5 with NORDER = 2 and to 1/D with NORDER = 0 for obtaining
comparable relative penalization of the base and of the grid amplitudes. The B constant
leading to lowest Probability 2 to Reject (at constant Probability 1 to Reject) should be
considered as most appropriate. Optionally, the homodyne base position may be
changed (by subtracting a user-supplied constant from fk,exp data) when an incorrect
estimate of 〈I(T)〉2 is suspected. Adjusting both bases simultaneously frequently yields
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ill-conditioning and hence was not tried. fk,exp data may be scaled, the square root of the
scaling factor then scales the ai amplitudes.

When a too low value ∑ 
i=1

r

ai  is obtained, the missing amplitude may be thought to be located

at very short relaxation times, where it contributes essentially nothing to f(t). A too
large value may be caused by incorrect data or by extending the τ grid down beyond the

lowest delay time where an artifact large a2 may result. A check that unscaled ∑ 
i = 1

r

ai

(“Total intensity” + “base” in the output file) does not appreciably exceed β1/2 (or 1
when β is unknown) is therefore recommended. Seeing a2 is also useful.

A program run may treat several data files, each of which may contain several data sets.

Data Input

A data file name may be entered in the command line; if not, the program requests the
user to enter it from the keyboard. The first data line should contain a data name, which
is copied to the output. The next line should contain an integer n indicating the number
of data items; n lines, each with a pair of (tk, fk,exp) data when n is positive or a pair of
(log tk, fk,exp) data when n bears the minus sign, should follow. When zero n is read in
or an error is encountered at n reading, the program calls a READ subroutine which
may be adapted by the user according to his needs. After terminating a data set calcu-
lation, the program tries to read another data set from the current data file. If an end of
the file or an error is encountered, a new data file name is asked from the keyboard.
Keying in “END” or “end” (without quotes) instead terminates the program run.

Setting a τ Grid

After successful reading in data, the program requests parameters DENSITY PER DE-
CADE, FROM, TO, and BASE. The first parameter (D) means the number of grid
points per one decade and is defaulted to four (to twelve in another program version);
it is not necessarily an integer. The next two parameters define the grid extent, FROM
is defaulted to t1, TO to 3tn; t1 and tn are assumed to be the lowest and largest delay
times, respectively. D should be at least one, TO at least twice the FROM; if not, a new
request for parameters follows. D × log τ2 is obtained by rounding D × log (FROM) to
nearest integer and τr is obtained from TO similarly, so that unity always enters the grid
and all integer powers of ten enter when D is an integer. More than one hundred grid
points may be introduced with a PC of 640 kB memory. When the number of grid
points allowed is exceeded, the program lowers D to largest acceptable integer and asks
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for confirmation. The user may confirm or limit the grid extent instead lowering D. The
grid should not extend much beyond the lowest delay time.

The BASE parameter (defaulted to zero) is subtracted from fk,exp data values allowing
a shift of the homodyne base.

Regularization

The reference solution (i.e., non-regularized, with α = 0 in Eq. (8)) is calculated first.
Then three parameters PRRE, PEBA, and NORDER are asked. PRRE means user-se-
lected Probability 1 to Reject and is defaulted to 0.5, PEBA is the B constant in Eq. (11)
or (12). PEBA is defaulted to 0 and NORDER to 2 initially, afterwards they keep their
current values. Entering a too large (≥1) Probability 1 to Reject value terminates the
data set calculation, a too low (≤0) value allows to repeat the calculation with the grid
and/or the homodyne base shift changed. When NORDER differs from both zero and
two, it is set to two and parameters are re-asked.

After calculating a regularized solution, only Probability 1 to Reject (now named
PRO1REJ) and PEBA are asked, a NORDER change is not allowed. When PRO1REJ
is less than 0.5, it is defaulted to 0.5, otherwise it is defaulted to 1 (i.e., to terminate).
When previous parameters are repeated, an extra refinement cycle is performed (a check of
the iteration convergence). When only PEBA is changed and the base is absent (a1 = 0),
the parameters are re-asked. An improper Probability 1 to Reject value acts like above.

The desired Probability 1 to Reject values should be entered in an increasing order,
otherwise convergence problems may arise.

Moment Calculation

Seven peak moments are calculated: the integral amplitude, the logarithmic (geometric)
and arithmetic mean τ values, the relaxation rate Γ = 1/τ mean value, the root-mean-
square (RMS) deviation of log τ from its mean, and the RMS deviations from means
divided by means of τ and of Γ. A peak is considered to spread from a local minimum
of ai through the next local maximum to the next local minimum. A minimum ampli-
tude ai, when non-zero, is distributed into the neighbouring peaks in the ratio opposite
to that of increases of ai in going to respective peaks (e.g., when the increase ai–1 – ai

is twice the increase ai+1 – ai, one-third of ai is counted to the peak containing ai–1 and
two-thirds to the peak containing ai+1). The moments are calculated also for all compo-
site peaks spreading from a local minimum to another one, provided no zero ai is em-
bedded in the composite peak. This provides the user with moments of peaks wih a
composite structure or when some local minima are considered as artifacts. Note that
the logarithmic RMS deviation is more stable with respect to perturbations than the
RMS deviations expressed in terms of τ or of Γ; therefore, logarithmic moments should
be preferred. With a grid fine enough, all peaks in the reference solution are doublets
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or singlets separated by zero amplitudes on both sides (on one side when marginal).
Their integral amplitudes and logarithmic mean τ values form a suitable starting itera-
tion for PES program2.

Results Output

An output file name may be entered in the command line together with the data file
name; if not, it is generated from the first data file name by changing its extension to
.RES, or to .RSL when the extension is .RES. First, the data set name (68 characters)
and the number of data items is output. The homodyne base shift (BASE =) follows
when nonzero. For each solution, the output starts with the number of nonzero ai

values, the grid density (D) rounded to nearest integer, a parameter IG (τ i = 10(i+IG)/D, i
= 2, 3, …, r), the actual value of E (Eq. (9)), this actual E decreased by the E yielding
required Probability 1 to Reject (an α value check, undefined and of no use in the
reference solution), and α in one line. This is followed with a list of non-zero ampli-
tudes (two triples of i, τ i, ai per line, τ1 is set to 1030). The heterodyne base a1 (base =)

follows when non-zero. The next line shows ∑ 
i = 2

r

ai  (Total intensity =). Then peak

moments are shown. All single peaks are numbered consecutively; for a composite
peak, two integers show from which single peak to which one the composite peak
extends; for a single peak just one integer is shown and the space for the other is left
blank. For an isolated non-zero ai, only the peak number, ai, and τ i are shown, followed
by a zero to indicate zero second moment. The output of a reference solution is com-
pleted by PRO1REJ = 0 on a line, that of a regularized solution by showing Probability 2
to Reject, the number of degrees of freedom and NORDER in one line, and Probability 1
to Reject, PEBA (the B constant of Eq. (11) or (12)) and α in the next line. The output
of all data sets treated within a single program run is stacked on in a single output file
no output file change being enabled within a program run.

The PC screen displays hints to operate the program and the results of the calcula-
tion, the latter in a way similar to that in the output file. In 1991, I equipped REPES
program with a graphic display on the screen, which optionally may be copied to a
printer by the PrintScreen key. Data are displayed after reading in and selected data
items may be discarded, e.g., when incorrect items appear. The number of discarded
items and the list of their indices are shown in the output file. On completing a solution,
a graph of the resulting τ distribution and a graph of residuals (i.e., fk,exp – f(tk) values) are
displayed. Then the user may in turn request re-inspecting either the data or the τ distribu-
tion. When the discarded data set is changed in inspecting the residuals or re-inspecting
the data, a repetitive calculation (starting from the reference solution) with the changed
set is done. Keying in a negative value for Probability 1 to Reject causes a display of
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the data with an opportunity of changing the discarded data set before repeating the
calculation; zero value causes skipping the display with no such opportunity.

ALGORITHM DESCRIPTION

Two methods are used for the least-squares refinement. The Newton–Raphson
method10 (NR) calculates Hessian matrix H of halved second derivatives of the mi-
nimized expression with respect to iterated parameters pi and the gradient vector g of
first derivatives (also halved) and uses –H–1g for correcting a trial parameter set. The
Gauss–Newton method (GN) neglects, in the H matrix, second derivatives of the ex-
pressions for data items. When the expressions are linear in pi (the linear case), both
methods are identical and the result is obtained within a single refinement cycle. NR
yields a very fast convergence, but usually needs a good starting estimate to converge.

With the non-negativity constraint, pi ≥ 0, such a set (the zero set) of pi parameters
should be found that, when the pi’s entering the zero set are fixed at zero (i.e., corre-
sponding elements of H and g are discarded), the least-squares solution yields all re-
maining pi’s non-negative and with this solution, all gi’s corresponding to the pi’s from
the zero set are positive. In the linear case, the zero set is unique and is sought by a
non-negative least-squares (NNLS) algorithm7.

For the error term E in Eq. (8), the g vector elements gi are

gi = ∑ 
k

2Fkvik(fk − fk,exp)  , (13)

where fk =f(tk), Fk = fk
1/2, v1k = 1, and vik = exp (–tk/τ i) for i = 2, 3, …, r. The H matrix

elements hij are

hij = ∑ 
k

(6fk − 2fk,exp)vikvjk (14)

with NR; with GN the factor 6fk – 2fk,exp should be replaced by 4fk. H is positively
definite with GN, which may not be with NR if a data item is underestimated more than
three times by the trial parameter set. Hessian matrix of the regularizor is denoted by R
and the gradient vector by r, so that corrections are calculated by –(H + αR)–1(g + αr).
There is r11 = B and r1 = Ba1. With NORDER = 0, rii = 1 and ri = ai, i = 2, 3, …, r. With
NORDER = 2, rii = 6, ri,i+1 = ri+1,i = –4, ri,i+2 = ri+2,i = 1, and ri = ai–2 – 4ai–1 + 6ai – 4ai+1 +
+ ai+2 where a0, a1, ar+1, and ar+2 are set to zero; the indices of rij and ri are restricted to
2 ≤ i,j ≤ r. All rij elements not mentioned above are zero. Note that r = Ra.

To obtain a strting trial a vector for the reference solution, the problem is linearized using
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gi = ∑ 
k

2Fkvik (fk1/2 + fk,exp
1/2 ) (fk

1/2 − fk,exp
1/2 ) ≈ 4 ∑ 

k

fk,exp (fk
1/2 − fk,exp

1/2 )vik  ,

replacing fk in hij by fk,exp, and removing a common factor of four. Then

gi
′ = ∑ 

k

fk,exp (fk1/2 − fk,exp
1/2 )vik     and     hij

′  = ∑ 
k

fk,exp vikvjk

holds. This is equivalent to taking square roots of fk,exp data in CONTIN. Using fk,exp

instead of its expectation value for the weight factor is good enough for this purpose
when the factor exceeds the noise level. However, this may not be true in the opposite
case. Therefore, when the factor is smaller than a threshold (arbitrarily chosen as
1/1024), it is replaced by the threshold. Following Provencher11, fk,exp

1/2  is taken as

−(−fk,exp )1/2 when fk,exp is negative. With this approximation, a NNLS run is performed

starting from zero trial a vector. The resulting a vector is iterated until convergence is
reached: using it in Eqs (13) and (14), g and H are reset and another NNLS run is
accomplished starting with this trial a; during the NNLS run, H is kept fixed and g is
being updated just with ∆g = H∆a as in the linear case. The a convergence is assumed

when all ai’s change less than 16–8 × ∑ 
i=1

r

ai ; this test may become inappropriate when a

very large a2 value is obtained due to an improper τ grid. Surprisingly, no need for
ensuring convergence was ever observed with proper fk,exp data. Improper data (a data
item quite off the autocorrelation curve) caused a failure sometimes. For the sake of
simplicity and speed, I developed my own NNLS algorithm avoiding the singular value
decomposition procedure.

NNLS Algorithm

Starting a NNLS iteration cycle with zero a vector at the very beginning, the maximum
of gi

2/hii is found and the respective ai is set to –gi/hii to minimize expression (8) with
respect to ai. g is updated with ∆gj = hijai, s (the number of ai’s outside the zero set) is
set to one, and hii is moved to h11

′ . Starting an iteration cycle with a non-zero trial a
(such that it minimizes expression (8) with respect to non-zero aj’s, s in number), the
Gauss-eliminated s × s submatrix of H matrix is left stored in H′  from the previous
cycle; a single two-dimensional array is used for storing both H and H′  as upper and
lower triangles (with shifting the latter by one row). Now, a minimum gi is found.
When non-negative, the NNLS run terminates. When negative, hii is moved to hs+1, s+1

′ ;
hij’s with aj’s outside the zero set are moved to hu,s+1

′  and Gauss elimination is extended
to the (s + 1)-th column. When hs+1,s+1

′  is positive afterwards, ai is accepted for leaving
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the zero set and s is incremented by one, otherwise NNLS rejects this ai and repeats the
minimum gi search with this ai neglected. When again a non-positive hs+1,s+1

′  results, the
minimum search is repeated in turn with all former “bad” ai’s neglected; in the opposite
case, ai found is accepted instead of primary “bad” ai. When every negative gi yields a
“bad” ai, H matrix is reset with GN using the current trial a vector and another NNLS
run is started with this trial a. Since a GN H matrix is positively definite, its Gauss
elimination may yield a non-positive diagonal element merely due to round-off errors.
REPES terminates calculation at such an event and asks for a new data file; choosing a
less dense τ-grid may be helpful in this case. After completing a NNLS run with GN,
NR is restored for the next run.

After an ai left the zero set, corrections ∆aj to the aj’s outside this set are calculated
using Gauss-eliminated H′; the correction to the ai (−gi/hs,s

′  – after incrementing s) is
positive. When –∆aj < aj always holds, aj’s are corrected, g updated with ∆g = H∆a,
and a next NNLS iteration cycle started. If not, minimum positive –aj/∆aj is found,
corrections scaled with this minimum, a and g updated, the respective aj re-entered to
the zero set, ak in the s-th position moved to the position (u-th) where aj lies, and s
decremented by one. Now, H′  elements with both indices not less than u must be re-
stored from H and Gauss elimination repeated starting from the u-th position. It is
therefore desirable to have aj as close to the s-th position as possible. In this respect,
ak’s where –aj/∆aj ≤ –ak/∆ak < –2aj/∆aj are considered as candidates for re-entering the
zero set in next steps and, when lying beyond the u-th position, are moved to last
positions before H′  restoring, starting from ak with the lowest –ak/∆ak value. A non-
positive diagonal H′ matrix element may now appear due to round-off errors only and
causes program termination as above. After Gauss-eliminated H′  is set, control returns
to the calculation of corrections ∆aj at the beginning of this paragraph with the dif-
ference that no zero ai appears now. When H is just reset or updated, Gauss elimination
of H′  starts from the first position and control again returns to the corrections calcula-
tion. A non-positive diagonal element appearing in this elimination causes resetting H
by GN unless it is already set by GN in which case calculation terminates.

Every step within a NNLS run decreases E, so that NNLS can never return to any former
iteration. Hence, cycling is impossible. Each scaling decreases the number of non-zero ai’s,
so that only a finite number of scalings may be done within a NNLS iteration cycle.
Now, a cycle starts with an a minimizing expression (8); such an a is unique for a given
set of zero ai’s. Since the number of zero sets is finite (2r ), the number of NNLS
iteration cycles within a run is finite. This proves the convergence of the NNLS run.

Regularization

The probabilities to reject and the number of degrees of freedom are defined by Eqs (5)–(7).
The error term E is given by Eq. (9). p0 equals the number s of the non-zero amplitudes
in the reference solution. Note that p0 is τ-grid-dependent since a PES peak is repre-
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sented by a singlet when it falls close to a grid point and by a doublet otherwise.
However, this seems to be of little importance in view of usually little sensitivity of the
regularized solution to the actual Probability 1 to Reject value12. In Eq. (7), H of NR
(Eq. (14)) is used rather than that of GN since it better represents E in the vicinity of
the minimum of expression (8); R follows from Eq. (11) or (12).

For the α iteration, x is calculated from the selected Probability 1 to Reject first. The
first approximation to x is obtained using Eqs 26.5.22 and 26.2.23 of ref.5 and is re-ite-
rated by the Newton method. At this, Ix is calculated by repetitive use of Eq. 26.5.16 of
ref.5, considering that Ix(a,b) converges to zero when a → ∞ and b and x < 1 are fixed;
dIx(a,b)/dx = xa–1(1 – x)b–1Γ(a + b)/(Γ(a)Γ(b)). For Γ(z), Eq. 6.1.41 of ref.5 with terms
up to z–7 is used when z > 18, Eq. 6.1.15 of ref.5 is used to meet this with a lower z and
in the repetitive use of Eq. 26.5.16. The x iteration converges unless the Probability 1 to
Reject is either very small (below 10–7) or very close to unity (above 1 – 10–5). Next, E =
= E0/(1 – x) is calculated and α is iterated to yield this E value in minimizing ex-
pression (8). Hence, REPES minimizes the regularizor R among solutions with a given
error term value E by the method of Lagrange multiplier (equal to 1/α).

For a linear case without the non-negativity constraint and when g is set with a = 0,

dE/d(α2) = g~(H + αR)−1R(H + αR)−1R(H + αR)−1g = r~(H + αR)−1r = ∑ 
i

ri
′2/hii

′   , where ri
′

and  hii
′   are elements of r and H + αR after Gauss elimination.  So, ∆(α2) = (E – Ecalc)/(dE/d(α2))

and α + ∆α = (α2 + ∆(α2))1/2 are used to iterate α by the Newton method. Using a linear

transformation bringing both H and R to a diagonal form, E = E0 + α2 ∑ 
i

ci/(di + α)2  with

some positive ci and di constants is found, which means that the Newton method underesti-
mates ∆(α2) when positive and overestimates it when negative. To prevent oscillations,
α + ∆α = 2α3/(2α2 – ∆(α2)) is used for the negative case.

With the non-negativity constraint, the current zero set (from the reference or pre-
vious regularized solution in the beginning) is used for the above α correction. Current
H + αR and g + αr are updated with R∆α and r∆α (with a correction for a change in
the B constant when changed; however, the B change is neglected in the first ∆α cor-
rection by using the old dE/d(α2) value) and used in place of H and g for a NNLS run
started with the current a as the trial a vector. This is repeated until α converges. In a
non-linear case, the solution for a particular α may be found by resetting H + αR using
Eq. (14) and g + αr using Eq. (13) after a NNLS run and repeating NNLS until a
converges. However, it is unpractical to calculate the exact solution in each α iteration
step, since several steps are often necessary to get proper zero set and setting H is the
most time-consuming step of REPES. Hence, α is iterated with H fixed and g updated
just with H∆a until two subsequent NNLS runs yield no change in the zero set and only
then H and g are reset and the whole procedure repeated until a converges. Conver-
gence problems were never observed in the α iteration. However, due to using the
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previous regularized solution to start a new one, the problems may arise when the latter
solution is of a lower Probability 1 to Reject value than the former one.

For calculating the number of degrees of freedom for a regularized solution, the
latter of expressions (7) is used. G = (H + αR)–1 is calculated starting from the Gauss-
eliminated H + αR. trace ((H + αR)–1R) is calculated using

Bg11 + ∑ 
i > 1

gii   for NORDER = 0  and

Bg11 + 6 ∑ 
i>1

gii − 8 ∑ 
i>1

gi,i+1 + 2 ∑ 
i>1

gi,i+2  for  NORDER = 2  ;

in both cases, the first term is absent when a1 enters the zero set. 
Probability 2 to Reject is calculated from Eq. (6) by repetitive using Eq. 26.5.16 of

ref.5. When p ≥ p0, it is arbitrarily set to 2.

DISCUSSION

Running REPES with simulated data8 yields results almost identical to those of CON-
TIN, with the only exception shown in Fig. 1 (reproduced Figs 2d and 3 of ref.8), where
CONTIN and REPES results obtained from the data simulated for a Gaussian distribu-
tion of 1/τ are compared. Apparently, the difference seen is caused by a very high
density of simulated data; data are in fact averaged in the Laplace transform inversion
and with high-density data, the averaging decreases the data variance below the square
root taking bias8 of CONTIN. As a much lower data density has been used since, no
such difference has been found again. Hence, REPES results are expected to be essen-
tially identical to those of CONTIN unless data are very dense. Nevertheless, REPES is
considerably faster and needs considerably less computer memory than CONTIN. An
influence of changing Probability 1 to Reject (P) is considered in ref.12. For a simulated
broad Pearson V distribution of τ, even a very small P value (0.01) yields a proper
smoothing and in an example of an experimental autocorrelation curve, the number of
peaks is found unchanged within a broad P range (0.01–0.999). This indicates that the
P value chosen may not be very critical for the result; for a thorough analysis, however,
a calculation for a few different P values should be recommended. The P values of
0.125, 0.5, and 0.875 were often used in the Institute and differences in the results were
revealed sometimes. A discussion of REPES may also be found in refs9,13.

REPES was used in studying dilute and semidilute solutions of polymers12,14–23, con-
centrated solutions of polymers24–27, diffusion of a polymer in a matrix of another
polymer28–37, an influence of a surfactant on polymers38–40, sol–gel transition41,
polymer blends42, polyelectrolytes43,44, zwitterions45, crosslinked gels as compared to
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corresponding linear polymers46–51, block copolymers and micelles52–63, and an in-
fluence of an antibiotic on micelles of cholesterol64. It was also used in studying the
effect of multiple light scattering65–67. Some of the above papers pursued both REPES
and CONTIN with identical data. None of them found any essential difference between
the results of these two methods.

The fact that REPES mostly gives essentially the same results as CONTIN means
that nearly all CONTIN artifacts8,68 persist in REPES. The Maximum Entropy (MAXENT)
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FIG. 1
Comparison of the relaxation time τ distributions obtained by CONTIN and REPES methods from
data simulated with a Gaussian distribution of 1/τ (w(τ) = 2τ0 exp (–(τ0/τ)2)/(π1/2τ2) with τ0 = 250 µs).
NORDER = 2. Full lines: simulated distribution; × calculated results (zero values not shown).
a CONTIN chosen solution, b REPES with Probability 1 to Reject of 0.5
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method seems to be68 even below CONTIN and hence below REPES. Methods restrict-
ing the number of maxima in the relaxation time distribution function instead of regu-
larizing (the so called peak-constraining methods or methods with forced number of
peaks) should be therefore preferred to regularizing methods. A flaw of these methods
is unaesthetic histogram bin edges appearing in the results; however, the methods pro-
duce no artifact side peaks or shoulders68,69. Another alternative is to use a trial relaxa-
tion time distribution function with some parameters adjusted. The generalized
exponential distribution70,71 seems preferential among them and was used in conside-
ring the polydispersity index72 and in a study of polystyrene dissolved in toluene18.

The paper was supported by the Grant Agency of the Czech Republic (Grant No. 203/94/0817
(1994)).

It should be mentioned here that Dr Blahoslav Sedlacek, in honour of whom this issue appears,
introduced the light scattering methods at the Institute of Macromolecular Chemistry. His effort in this
field is gratefully appreciated.
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